
Data	Transformation	with	dplyr	
A	Look	at	the	Average	Price	of	Avocados	in	New	York	

By	Anisha	BharathSingh	

When	working	on	any	data	science	project,	you	will	need	to	transform	data	into	the	proper	
form	to	work	with.	This	can	include	creating	new	variables,	renaming	variables	or	reordering	
observations	in	a	data	frame.	Overall,	we	just	want	to	make	data	easier	to	work	with.	This	is	
where	the	dplyr	package	comes	in.	As	part	of	the	tidyverse	package,	which	we	are	already	
familar	with,	dplyr	allows	us	to	transform	our	data.	

The	five	main	dplyr	functions	we	will	be	covering	are:	filter(),	arrange(),	select(),	mutate()	and	
summarize().	

First,	let’s	make	sure	that	the	tidyverse	package	is	installed	and	loaded.	

#install.packages("tidyverse")		
library(tidyverse)	#load	tidyverse	package	

##	──	Attaching	packages	────────────────────────────────────────────────────────────────
────────	tidyverse	1.2.1	──	

##	✔	ggplot2	3.1.0					✔	purrr			0.2.5	
##	✔	tibble		1.4.2					✔	dplyr			0.7.8	
##	✔	tidyr			0.8.2					✔	stringr	1.3.1	
##	✔	readr			1.2.1					✔	forcats	0.3.0	

##	──	Conflicts	────────────────────────────────────────────────────────────────────────
───	tidyverse_conflicts()	──	
##	✖	dplyr::filter()	masks	stats::filter()	
##	✖	dplyr::lag()				masks	stats::lag()	

Now	for	the	data.	We	will	be	working	with	a	data	set	that	includes	avocado	prices	and	more	
from	2015	through	2018.	Let’s	read	the	avocado	excel	file	and	preview	the	data	set	with	the	
head()	function	to	see	what	variables	we	have	to	work	with.	

avocado_data	<-	read_csv("avocado.csv")	#assign	data	to	"avocado_data"	

##	Warning:	Missing	column	names	filled	in:	'X1'	[1]	

##	Parsed	with	column	specification:	
##	cols(	
##			X1	=	col_double(),	
##			Date	=	col_date(format	=	""),	
##			AveragePrice	=	col_double(),	
##			`Total	Volume`	=	col_double(),	
##			`4046`	=	col_double(),	



##			`4225`	=	col_double(),	
##			`4770`	=	col_double(),	
##			`Total	Bags`	=	col_double(),	
##			`Small	Bags`	=	col_double(),	
##			`Large	Bags`	=	col_double(),	
##			`XLarge	Bags`	=	col_double(),	
##			type	=	col_character(),	
##			year	=	col_double(),	
##			region	=	col_character()	
##	)	

head(avocado_data)	#preview	data	

##	#	A	tibble:	6	x	14	
##						X1	Date							AveragePrice	`Total	Volume`	`4046`	`4225`	`4770`	
##			<dbl>	<date>												<dbl>										<dbl>		<dbl>		<dbl>		<dbl>	
##	1					0	2015-12-27									1.33									64237.		1037.	5.45e4			48.2	
##	2					1	2015-12-20									1.35									54877.			674.	4.46e4			58.3	
##	3					2	2015-12-13									0.93								118220.			795.	1.09e5		130.		
##	4					3	2015-12-06									1.08									78992.		1132		7.20e4			72.6	
##	5					4	2015-11-29									1.28									51040.			941.	4.38e4			75.8	
##	6					5	2015-11-22									1.26									55980.		1184.	4.81e4			43.6	
##	#	...	with	7	more	variables:	`Total	Bags`	<dbl>,	`Small	Bags`	<dbl>,	
##	#			`Large	Bags`	<dbl>,	`XLarge	Bags`	<dbl>,	type	<chr>,	year	<dbl>,	
##	#			region	<chr>	

This	data	set	contains	14	columns	including	dates,	years,	average	prices	and	regions.	We	also	
have	information	on	how	many	bags:	small,	large	and	Xlarge	were	sold	along	with	the	total	
volume	(or	number)	of	avocados	sold.	We	have	specific	information	on	the	Product	Lookup	
codes	(PLUs)	for	Hass	Avocados	and	whether	or	not	the	avocado	was	conventional	or	organic.	
Lastly,	if	you	take	a	look	at	the	first	column,	you	will	notice	that	this	just	numbers	each	row.	We	
can	eliminate	this	column	by	getting	right	into	some	data	transformation.	

The	select()	function	allows	us	to	zoom	in	on	a	useful	set	of	data.	In	this	case,	we	will	select	all	
variables	except	the	first	column,	X1,	and	assign	it	to	a	new	data	frame	called	“avocado”.	We	
can	select	all	of	these	variables	by	using	a	“:”	between	the	“Date”"	and	“region”"	columns.	In	
general,	we	could	also	select	a	variable	directly	by	its	name	or	by	what	the	variable	names	start,	
contain	or	end	with	using:	starts_with(),	contains(),	ends_with().	

avocado	<-	select(avocado_data,	Date:region)	#select	data	from	columns	date	through	region	
#select(data	frame,	variable1:variable2)	
colnames(avocado)	#print	variable	names	

##		[1]	"Date"									"AveragePrice"	"Total	Volume"	"4046"									
##		[5]	"4225"									"4770"									"Total	Bags"			"Small	Bags"			
##		[9]	"Large	Bags"			"XLarge	Bags"		"type"									"year"									
##	[13]	"region"	

We	can	see	that	this	new	avocado	data	frame	excludes	the	“X1”"	column.	



Part	of	transforming	data	also	includes	having	consistent	variable	names,	so	let’s	rename	the	
remaining	columns	names	so	that	they	are	all	aligned	using	the	colnames()	function	to	assign	
new	names:	

colnames(avocado)	<-	c("Date",	"Average_Price",	"Total_Volume",	"4046",	"4225",	"4770",	"Total_Bags"
,	"Small_Bags",	"Large_Bags",	"XLarge_Bags",	"Type",	"Year",	"Region")	
colnames(avocado)	#print	data	frame	variable	names	

##		[1]	"Date"										"Average_Price"	"Total_Volume"		"4046"										
##		[5]	"4225"										"4770"										"Total_Bags"				"Small_Bags"				
##		[9]	"Large_Bags"				"XLarge_Bags"			"Type"										"Year"										
##	[13]	"Region"	

Now	that	all	of	our	variable	names	are	capitalized	and	have	“_“,	let’s	move	into	our	next	
function:	arrange().	This	function	allows	us	to	arrange	our	data	observations	ordered	by	a	
variable	or	column.	Let’s	arrange	our	data	by”Date“”,	and	the	“Average_Price”"	as	a	second	
factor	to	see	how	this	function	works:	

avocado	<-	arrange(avocado,	Date,	Average_Price)	#arrange	data	frame	by	Date	then	Average_Price	
#	arrange(df,	VarName)	
head(avocado)	#preview	data	frame	

##	#	A	tibble:	6	x	13	
##			Date							Average_Price	Total_Volume	`4046`	`4225`	`4770`	Total_Bags	
##			<date>													<dbl>								<dbl>		<dbl>		<dbl>		<dbl>						<dbl>	
##	1	2015-01-04										0.65					1048062.	7.71e5	1.78e5		6509.					92499.	
##	2	2015-01-04										0.71					1062991.	5.06e5	4.36e5		4379.				115838.	
##	3	2015-01-04										0.74					1086364.	6.13e5	3.74e5		9817.					89330.	
##	4	2015-01-04										0.75						758119.	4.27e5	1.48e5	15268.				168014.	
##	5	2015-01-04										0.77					5144267.	2.75e6	1.76e6	73433.				570683.	
##	6	2015-01-04										0.8							317861.	1.34e5	1.21e5		4591.					58639.	
##	#	...	with	6	more	variables:	Small_Bags	<dbl>,	Large_Bags	<dbl>,	
##	#			XLarge_Bags	<dbl>,	Type	<chr>,	Year	<dbl>,	Region	<chr>	

We	can	see	that	our	data	frame,	which	was	originally	ordered	by	region,	is	now	ordered	first	by	
“Date”	then	by	the	“Average_Price”	for	each	date.	If	we	wanted	to	arrange	a	column	in	
descending	order,	we	could	use	the	desc()	function	within	the	arrange()	function	on	the	
variable	we	want	to	arrange.	

Let’s	now	take	a	look	at	a	more	specific	subset	of	the	data.	How	about	we	take	a	look	at	the	
data	for	avocados	in	New	York	year	over	year?	Since	the	data	set	does	not	have	data	for	all	of	
2018,	let’s	remove	these	data	rows	and	focus	on	data	from	15’-17’.	

We	are	able	to	subset	variables	by	specific	values	using	the	filter()	function.	So,	let’s	filter	our	
avocado	data	frame	to	create	a	new	data	frame	that	only	contains	data	for	New	York	in	the	
years	15’-17’:	

NY_15_17	<-	filter(avocado,	Region	==	"NewYork",	Year	!=	"2018")	#filter	for	New	York	data	only	that	do
es	not	contain	2018	data	



#filter(data	frame,	variable1	==	"observation",	variable2	!=	"observation")	
head(NY_15_17)	#preview	data	frame	

##	#	A	tibble:	6	x	13	
##			Date							Average_Price	Total_Volume	`4046`	`4225`	`4770`	Total_Bags	
##			<date>													<dbl>								<dbl>		<dbl>		<dbl>		<dbl>						<dbl>	
##	1	2015-01-04										1.09					1402890.	23641		1.13e6	1.87e3				249496.	
##	2	2015-01-04										1.93							17328.		2357.	1.27e4	9.47e0						2269.	
##	3	2015-01-11										1.34					1018226.	15881.	7.15e5	2.32e3				285499.	
##	4	2015-01-11										2.03							14818.		1744.	1.09e4	6.09e1						2111.	
##	5	2015-01-18										1.37					1044281.	18946.	7.49e5	3.04e3				272986.	
##	6	2015-01-18										2.08								9205.			693.	7.15e3	3.79e1						1327.	
##	#	...	with	6	more	variables:	Small_Bags	<dbl>,	Large_Bags	<dbl>,	
##	#			XLarge_Bags	<dbl>,	Type	<chr>,	Year	<dbl>,	Region	<chr>	

Taking	a	look	at	this	new	data	frame,	we	can	see	under	“Region”	that	it	only	contains	
observations	equal	to	“NewYork”,	and	that	under	“Year”,	it	does	not	contain	any	observations	
for	“2018”.	When	filtering	a	data	frame,	we	could	also	filter	with	other	comparisons	including	>,	
>=,	<,	<=	and	logical	operators	like	&	“and”,	|	“or”	and	!	“not”.	

Now	that	we	have	our	data	selected,	let’s	create	a	scatterplot	of	the	average	price	of	avocados	
throughout	the	year	split	by	year.	We	can	do	this	with	a	ggplot	point	plot	and	facet	it	by	year;	
or	in	other	words,	create	a	separate	plot	for	each	year.	

ggplot(data	=	NY_15_17)	+	geom_point(mapping	=	aes(x	=	Date,	y	=	Average_Price))	+	facet_grid(~	Year
)	+	ggtitle("Average	Avocado	Prices	(NY,	2015-2017)")	+	labs(y	=	"Average	Price")	#create	scatterplot	of	a
verage	price	in	NY	by	date	faceted	by	year	



		

From	these	plots	we	can	see	that	in	all	years,	the	average	price	of	avocados	fluctuated	
throughout	the	year.	Avocado	prices	in	2015	and	2017	peaked	mid-year	while	prices	in	2016	
stayed	higher	towards	the	end	of	the	year.	Additionally,	2017	prices	seem	to	be	higher	than	the	
previous	two	years.	

Now	let’s	take	a	look	at	how	the	number	of	avocados	sold	affected	the	average	prices.	For	this	
we	will	plot	“Total_Volume”	vs.	“Average_Price”.	

Before	we	plot,	looking	at	our	data	frame,	we	can	see	that	observations	for	“Total_Volume”	
range	across	several	orders	of	magnitude	which	may	not	result	in	a	very	clean	plot.	We	can	use	
the	handy	log	transformation	helper	function	to	take	the	log	of	our	“Total_Volume”	column	in	
order	to	work	with	smaller	values.	Not	only	that,	but	we	can	take	the	log	of	our	“Total_Volume”	
column	and	add	it	to	our	existing	NY_15_17	data	frame	with	another	one	of	our	data	
transformation	functions:	mutate().	(The	log()	function	is	just	one	of	several	operators	that	can	
be	used	within	the	mutate()	function.)	Let’s	take	a	look	at	the	log()	and	mutate()	functions	in	
action:	

NY_15_17	<-	mutate(NY_15_17,	Total_Volume_Log	=	log(Total_Volume))	#create	"Total_Volume_Log"	v
ariable	and	add	to	data	frame	
#mutate(df,	NewVariable	=	log(VarName))	
colnames(NY_15_17)	#	print	data	frame	variable	names	

##		[1]	"Date"													"Average_Price"				"Total_Volume"					
##		[4]	"4046"													"4225"													"4770"													



##		[7]	"Total_Bags"							"Small_Bags"							"Large_Bags"							
##	[10]	"XLarge_Bags"						"Type"													"Year"													
##	[13]	"Region"											"Total_Volume_Log"	

Taking	another	look	at	the	column	names	of	the	data	frame,	we	can	see	that	the	new	column	
called	“Total_Volume_Log”	with	the	log	values	of	“Total_Volume”	was	added	to	our	data	
frame,	and	we	were	able	to	do	that	in	just	one	step.	It	is	also	possible	to	add	a	new	variable	to	a	
data	frame	and	only	keep	that	variable,	by	using	the	transmute()	function	instead.	However,	we	
still	need	our	other	variables	so	we	will	not	be	using	that.	

Now	we	can	return	to	our	“Total_Volume”	vs.	“Average_Price”	plot,	but	this	time	use	our	new	
“Total_Volume_Log”	variable.	We	can	also	add	a	smooth	line	over	our	point	line	so	that	we	can	
clearly	see	the	trend	between	the	number	of	avocados	sold	and	the	average	price.	

ggplot(data	=	NY_15_17)	+	geom_point(mapping	=	aes(x	=	Total_Volume_Log,	y	=	Average_Price))	+	geo
m_smooth(se	=	FALSE,	mapping	=	aes(x	=	Total_Volume_Log,	y	=	Average_Price))	+	facet_grid(~Year)	+	g
gtitle("Log	of	Total	Volume	vs.	Average	Price	of	Avocados	sold	(NY,	2015-2017)")	+	labs(x	=	"Log	of	Total	
Volume",	y	=	"Average	Price")		

##	`geom_smooth()`	using	method	=	'loess'	and	formula	'y	~	x'	

	

#create	scatterplot	and	smooth	line	of	total_volume_log	in	NY	by	date	faceted	by	year		

Do	these	plots	remind	you	of	something?	How	about	the	supply	and	demand	model?	We	can	
see	that	when	the	volume	of	avocados	sold	was	higher,	the	average	price	was	lower.	

Based	on	this	information,	if	we	think	back	to	our	original	plot	of	average	price	throughout	the	
year,	we	would	expect	that	the	average	price	dips	correlated	with	larger	volume	of	avocados	



sold	and	vice	versa.	By	scaling	our	original	data	points	with	color	using	“Total_Volume_Log”	
data,	we	can	actually	see	if	this	was	true:	

ggplot(data	=	NY_15_17)	+	geom_point(mapping	=	aes(x	=	Date,	y	=	Average_Price,	color	=	Total_Volum
e_Log))	+	facet_grid(~	Year)	+	ggtitle("Average	Avocado	Prices	scaled	by	the	Log	of	Total	Volume	(NY,	20
15-2017)")	+	labs(y	=	"Average	Price",	color	=	"Log	of	Total	Volume")		

	

#create	scatterplot	of	average	price	in	NY	by	date,	scaled	by	the	log	total	volume,	faceted	by	year	

And	to	no	surprise,	the	lighter	blue	points	which	represent	a	higher	volume	of	avocados	sold	
are	reflected	in	the	data	points	where	the	average	price	was	lower.	And	vice	versa,	this	
correlates	with	higher	average	prices	at	lower	volumes	of	avocados	sold.	

Now,	for	our	final	dplyr	data	transformation	function	we	will	focus	on	the	“Average_Price”	of	
avocados	sold	in	NY.	Specifically,	we	will	find	the	median	value	of	“Average_Price”	by	using	the	
summarize()	function.	This	will	collapse	all	observations	of	the	“Average_Price”	variable	into	
one	single	observation.	

summarize(NY_15_17,	Median_Avg_Price	=	median(Average_Price,	na.rm	=	TRUE))		

##	#	A	tibble:	1	x	1	
##			Median_Avg_Price	
##														<dbl>	
##	1													1.81	



#summarize	Average_Price	with	median()	
#na.rm	=	TRUE	removes	any	NA	results	

Using	summarize(),	we	just	collapsed	the	“Average_Price”	variable	into	one	row	that	contains	
its	median,	which	shows	that	the	median	average	price	of	avocados	sold	in	New	York	from	
2015-2017	was	$1.81.	The	summarize()	function	is	even	more	useful	when	combined	with	the	
group_by()	function,	which	allows	us	to	use	an	individual	variable	or	group	as	the	unit	of	
analysis	instead	of	the	entire	data	frame.	

For	example,	instead	of	summarizing	the	“Average_Price”	by	all	variables	in	the	data	frame,	we	
can	find	the	median	by	year	with	the	group_by()	function.	First,	we	will	create	a	new	data	frame	
grouped	by	“Year”,	and	then	summarize	that	data	frame.	

by_year	<-	group_by(NY_15_17,	Year)	#create	data	frame	that	groups	data	by	Year	
summarize(by_year,	Median_Avg_Price	=	median(Average_Price,	na.rm	=	TRUE))	#summarize	Average_
Price	with	median()	by	Year	

##	#	A	tibble:	3	x	2	
##				Year	Median_Avg_Price	
##			<dbl>												<dbl>	
##	1		2015													1.55	
##	2		2016													1.90	
##	3		2017													1.81	

Now,	instead	of	collapsing	the	“Average_Price”	variable	into	one	row	that	contains	the	median	
for	the	entire	data	frame,	it	is	now	collapsed	by	the	data	frame	grouped	by	“Year”.	See	the	
difference?	In	2015,	the	median	average	price	was	$1.55;	in	2016,	the	median	average	price	
was	$1.90;	and	in	2017,	the	median	average	price	was	$1.81.	

An	easier	way	to	accomplish	the	two	steps	above	of:	1)	creating	the	data	frame	grouped	by	
“Year”	and	2)	summarizing	the	data	is	by	using	a	pipe	to	combine	the	two	steps	into	one.	

By	using	a	pipe,	%>%,	we	can	accomplish	both	of	these	steps	and	print	the	results.	See	the	code	
below:	

by_year	<-	NY_15_17	%>%	#call	the	price_NY_15_17	df	
		group_by(Year)	%>%	#group	by	"Year"		
		summarize(Median_Avg_Price	=	median(Average_Price),	na.rm	=	TRUE)	%>%	#summarize	Average_Pri
ce	with	median()	by	Year	
print(by_year)	#print	results	

##	#	A	tibble:	3	x	3	
##				Year	Median_Avg_Price	na.rm	
##			<dbl>												<dbl>	<lgl>	
##	1		2015													1.55	TRUE		
##	2		2016													1.90	TRUE		
##	3		2017													1.81	TRUE	



We	just	combined	a	three-step	process	into	one	step.	Imagine	how	useful	this	can	be	when	
working	with	larger	data	sets	and	using	more	steps	or	operations.	

These	five	dplyr	functions	can	do	wonders	when	it	comes	to	formatting	data	sets,	and	as	we	
saw,	each	function	has	their	own	set	of	functions	which	makes	transforming	data	sets	even	
easier.	We	have	only	scraped	the	surface	of	what	is	possible	with	data	transformation,	and	
hopefully	we	can	explore	some	other	functions	in	future	projects.	

	

Data	Source:	

Kiggins,	J.	(2018,	June	06).	Avocado	Prices.	Retrieved	April	27,	2019,	from	
https://www.kaggle.com/neuromusic/avocado-prices#avocado.csv	

	


